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Overview

Timeline

• Start: 10/2016 (FY17)

• Finish: 09/2020 (FY20)

• % Complete (scope): ~75%

Budget

• Total project funding

▪ DOE: $ 1M

▪ Industry cost share: 30%

• Funding in FY 2019 = $ 460K

• Funding in FY 2020 = $ 0K

• Future funds anticipated: $ 0

June 02, 2020

Barriers

• Strength: Develop process for stamping 
high-strength aluminum (Al) for 
structural applications without degrading 
its high strength

• Formability: Develop ways to enable 
sufficient formability of Al to stamp it at 
room-temperature

Partners

• Magna-Stronach Centre for Innovation 
(Tier-1)

• General Motors (original equipment 
manufacturer (OEM))
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Relevance/Objective

• DOE-VTO

▪ Long-term objective → 50% mass reduction of a vehicle

▪ 2025 Target → 25% glider mass reduction, relative to comparable 2012 vehicles, at an added cost of no 
more than $5/lb weight saved

• USDRIVE

▪ Aluminum components offer potential overall weight reduction of 40-60% when replacing cast iron/steel

▪ Methods to improve the formability of high-strength Al alloys (>600 MPa), to values equivalent to steel, are a 
high priority research need [USDRIVE Materials Tech Team Roadmap, October 2017]

• Project Objective

▪ Develop thermo-mechanical approaches to enable room-temperature stamping of high-strength (7xxx) Al 
alloys

• Challenges

▪ High-strength Al alloys do not have sufficient formability to be stamped at room-temperature

▪ Warm/hot stamping is costly and may require post-forming heat-treatments to regain the high-strength

June 02, 2020
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Approach & Milestones

✓ Gate 1 (FY17-Q1): Potential component identification

✓ Milestone (FY17-Q3): Forming limit diagram (FLD) determination

✓ Gate 2 (FY18-Q2): Stamping simulations predict that the component can be stamped at room-temperature

• Milestone (FY19-Q3): Determine hardness distribution over the as-stamped component
▪ [Delayed] Sub-contract signed Q1 FY20; delays in shipping Al blanks and stamping trials

June 02, 2020
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Technical Accomplishments and Progress (FY19)

• An in-production hot-
stamped steel side-impact 
beam was scanned to 
create a 3-dimensional 
computer-aided design 
(CAD) model and provide 
an initial design for the 
target Al side-impact beam

• Emulation of in-production 
design provides a suitable 
and realistic initial target 
design for prototype 
fabrication

June 02, 2020

TOP VIEW (Steel Beam)

BOTTOM VIEW (Steel Beam)

BOTTOM VIEW (Simulated Steel Beam)
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Technical Accomplishments and Progress (FY20)

• Microstructure-based model: Estimate strength at different stages of 
precipitation aging and deformation to optimize strength and formability
✓Distinguish the effects of GP-I and GP-II zones

• X-ray scattering experiments to determine precipitation aging kinetics
✓Brookhaven National Laboratory (National Synchrotron Light Source (NSLS-II) 11-BM)

✓Argonne National Laboratory (Advanced Photon Source (APS) 1-ID-B,C,E)

• Sub-contract for stamping side-impact beams at Magna-SCFI
✓7075Al blanks purchased and delivered

✓Stamping

▪ Paint-bake

▪ 3-point bend testing

June 02, 2020
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Technical Accomplishments and Progress

Model Development and Preliminary Application to 7xxx Al:

• Shearable and un-shearable precipitates

• Platelet geometry of precipitates (specific for 7xxx alloys)

• Plasticity-precipitation coupling

June 02, 2020

▪Model output
▪Rapid increase in strength during 

straining

▪Peak in strengthening

▪Over-aging

▪Predicted W-temper yield strength is 

in good agreement with that of similar 

Al alloy (Al-5.5%Zn-2.5%Mg-1.5%Cu, 

~100 MPa) [J. R. Davis, Aluminum and 

aluminum alloys, ASM International, 1993]

σ = Yield strength

σi = Intrinsic strength 

Δsss= Yield strength increment (solid 

solution strengthening)

Δsd= Yield strength increment 

(dislocation strengthening)

Δsp= Yield strength increment 

(precipitation strengthening)

M = Taylor factor

m = Shear modulus

α = Constant – dislocation contribution 

to flow stress

b = Burger’s vector

εss = Misfit strain due to solute

Css = Mean solute concentration 

Δτ = Shear stress increment

ρ = Dislocation density

2 2

i ss d ps s s s s= +  +  + 

p Ms  = 

3/2

ss ss ssM b Cs m  =

d M bs m  =

The model captures the key features of precipitation strengthening evolution in 7xxx Al

Model prediction at 

160C aging using 

SAXS data from 

Deschamps et al., 

Acta Mater. (2012)
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Technical Accomplishments and Progress

Precipitation Strengthening in 7075 Al

• Guinier-Preston (GP-I) zones (Mg-rich): Point-like

• Guinier-Preston (GP-II) zones (Zn-rich): Plate-like

• Strength at t < 24 hr. natural aging: GP-I zones

• Strength at t > 24 hr. natural aging: GP-II zones

June 02, 2020
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Technical Accomplishments and Progress

Experiments at Brookhaven National Laboratory- National Synchrotron Light Source

June 02, 2020
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• Small and Wide Angle X-ray Scattering 

(SAXS/WAXS)

• Different natural aging conditions (S1 and S6)

Instability in 

precipitate size during 

long-term natural 

aging was observed 

and its potential 

influence on 

mechanical properties 

of 7075 Al 

components, made by 

room-temperature 

forming, needs to be 

considered

• SAXS Data → Calculate radius vs. time

• Cyclic oscillations → Dynamic state of precipitates 

which indicates an increased solute flux into the Al-

matrix
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Accomplishments and Progress

June 02, 2020

Stamped Beam 

(Top View)

Stamped Beam 

(Bottom View)

Untrimmed Stamped Al Beams

HotBox Oven for Heating Al Blanks

Al blank on 

the oven 

shelf

Stamping of beams is underway → To be delivered to PNNL for mechanical characterization
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Responses to Previous Years Reviewers’ 
Comments

• No reviewer comments

June 02, 2020
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Collaboration and Coordination

• Magna-SCFI (Tier-1)
▪ Component selection and modeling

▪ Stamping simulations

▪ Prototype fabrication

• Brookhaven National Lab (National Synchrotron Light Source (NSLS-II) 
beamline
▪ X-ray beamline experiments and data analysis

• Argonne National Lab (Advanced Photon Source (APS) beamline)
▪ X-ray beamline experiments and data analysis

• General Motors (OEM)
▪ Internal studies on lightweighting

▪ Component and Al alloy selection

▪ Component design

▪ Die design June 02, 2020
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Remaining Challenges and Barriers

• Determine the thermomechanical processing that allows simultaneous 
formability (at room-temperature) and high strength in the formed component
▪ Final mechanical properties of the stamped beams remain to determined

• High-strength Al can continue to undergo natural aging after forming
▪ Post-formed mechanical properties need to be evaluated for long-term thermal stability

• Integrate microstructure and mechanical property models

▪ Distinguish different strengthening mechanisms

• Cost-effectiveness of the proposed approach is unknown

June 02, 2020
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Proposed Future Work

• Complete prototype stamping (Magna)
▪ Trimming of stamped beams

▪ Paint-bake treatment

• Characterize the stamped component (PNNL and Magna)
▪ 3-point bend test

▪ Hardness measurements

• Integrate microstructure and mechanical property models (PNNL)
▪ Analysis and modeling using in-situ aging data (APS beamline experiments)

▪ In-situ TEM experiments for improved understanding of precipitation/dissolution

June 02, 2020

Any proposed future work is subject to change based on funding levels
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Summary

• Goal is to develop a process to stamp high-strength Al at room-temperature 
without a separate precipitation-hardening heat-treatment

• Modeling suggests strengthening during initial stages of natural aging is 
controlled by GP-I zones, and subsequently by GP-II zones

• Analysis of beamline data suggests cyclic variation in precipitate size during 
long-term natural aging which indicates a complex state of precipitate evolution

• Stamping of prototype side-impact beam made of 7075 Al on-going in 
conjunction with a Tier-1 supplier

June 02, 2020
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Approach

• Phase I (3 months)
▪ Task 1: Identify 3-5 potential stamped sheet components

▪ Gate 1: Demonstrate potential for sufficient return on (DOE) investment and the potential for 
commercialization to replace high-strength steel with high-strength Al

• Phase II (15 months)
▪ Task 2: Determine strengthening potential of W temper formed 7xxx Al alloys 

▪ Task 3: Determine constitutive relations for selected Al alloys

▪ Task 4: Perform stamping simulation for the selected prototype structural component

▪ Gate 2: Stamping simulations that predict with confidence that the selected component can be stamped in at 
least one 7xxx Al alloy-temper combination at room-temperature

• Phase III (18 months)
▪ Task 5: Integrate microstructure and mechanical property models for the selected Al alloys

▪ Task 6: Fabricate prototype component

▪ Task 7: Characterization of prototype component

June 02, 2020
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